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Abstract. The production of top quark pairs accompanied by a hard gluon in e+e− annihilation is studied
including next-to-leading order corrections in the strong coupling. At leading order, the fraction r of tt̄g
events with respect to all tt̄ events is computed analytically as a function of the minimal gluon energy.
Next-to-leading order results for r are given for center-of-mass energies of 0.5 and 1 TeV. We further
calculate the differential distribution of r with respect to several variables, including the top quark energy
and the tt̄ invariant mass. We then investigate how our results depend on the choice of the renormalization
scheme for the top quark mass by comparing results expressed in terms of either the pole mass or the MS
mass. Finally we estimate the sensitivity of the fraction r on the value of the running top quark mass at
a scale of 1 TeV.

1 Introduction

A future high-energy e+e− collider will open up a new
domain for the experimental investigation of the funda-
mental interactions between elementary particles. In par-
ticular, the production of top quark pairs in a clean en-
vironment will offer many interesting opportunities both
to perform precision tests of Quantum Chromodynamics
(QCD) and to probe possible deviations from the standard
theory. For example, the total cross section for e+e− → tt̄
has been computed recently to next-to-next-to-leading or-
der in the strong coupling αs both in the threshold region
[1–3] and also far above threshold [4]. The results obtained
for the threshold region will allow for a very precise de-
termination of the top quark mass [5–7].

The subject of this paper is the production of top
quark pairs above threshold accompanied by (at least) one
additional parton with a hard momentum. To be more ex-
plicit, we are interested in the reaction

e+(p+) + e−(p−) → t(kt) + t̄(kt̄) + X(kX), (1)

and we require that the parton(s) X carry a large mo-
mentum kX . At order αs, the additional parton can only
be a gluon, and at order α2

s we have the possibilities
X = g, gg, qq̄. By determining the properties of a final
state with three or more partons one can test the strong
interactions in great detail as is well known from the exten-
sive studies of jets in e+e− annihilation. For example, by
comparing the cross section for (1) (which will be precisely
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defined in the next section) to the inclusive tt̄ produc-
tion cross section, one could measure αs. Any deviation
from the standard determination of αs using event sam-
ples containing light quark jets would indicate a violation
of the “flavour independence” of the strong interactions
— i.e., would point towards new physics phenomena. A
specific example of non-standard interactions that could
be probed by reaction (1) are possible anomalous cou-
plings of the top quark to photons, Z-bosons and gluons.
In [8] it has been shown that a large anomalous chro-
momagnetic tt̄g coupling would modify the gluon energy
spectrum in e+e− → tt̄g. Furthermore, symmetry tests
can be performed utilizing the richer kinematic structure
of the final state in (1). These contain tests of the CP
symmetry [9] and the search for final state rescattering
effects using triple momentum correlations [10]. Both the
search for heavy quark anomalous couplings [11] and the
symmetry tests [12] have been shown to be experimentally
feasible in the case of bb̄g production at the Z resonance,
and it will be interesting to see whether similar studies
are possible with top quarks.

For any of the above studies it is mandatory to anal-
yse reaction (1) at next-to-leading order in αs, which is
the topic of this paper. It is organized as follows: We start
in Sect. 2 by studying reaction (1) at leading order. We
derive an analytic formula for the fraction r of tt̄g events
with respect to all tt̄ events as a function of the minimal
gluon energy. In Sect. 3 we discuss the QCD corrections to
reaction (1). We evaluate the fraction r at next-to-leading
order for center-of-mass energies of 0.5 and 1 TeV. We
further compute the differential distribution of the cross
section for reaction (1), normalized to the total tt̄ cross
section, with respect to the top quark energy, the tt̄ in-
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variant mass, and the cosine of the angle between the t
and t̄. In Sect. 4 we study the dependence of our results
on both the renormalization scale and the renormalization
scheme employed to define the top quark mass. We first
review the dependence of the total tt̄ cross section on the
mass renormalization scheme by expressing the result to
order αs in terms of either the perturbative pole mass or
the MS (running) mass. We then study in the same fashion
the scheme and scale dependence of the fraction r. Finally
we estimate, for a c.m. energy of 1 TeV, the sensitivity of
the fraction r on the value of the running top quark mass.

2 Analysis at leading order

In this section we discuss in some detail reaction (1) at
leading order (LO) in αs, i.e., the production of a tt̄ pair
together with a single gluon,

e+(p+) + e−(p−) → t(kt) + t̄(kt̄) + g(kg). (2)

We start by defining the following dimensionless variables:

x =
2kkt

s
=

2Et√
s

,

x̄ =
2kkt̄

s
=

2Et̄√
s

,

xg =
2kkg

s
=

2Eg√
s

= 2 − x − x̄,

xtt̄ =
(kt + kt̄)2

s
= 1 − xg, (3)

where
√

s is the center-of-mass energy, k = p+ + p−, and
Et,t̄,g are the energies of the final state particles in the
c.m. system. The cross section for reaction (2) develops a
soft singularity as Eg → 0. An infrared finite cross section
may be defined by demanding

xg > xcut, (4)

where xcut is some preset number. This condition avoids
the region of phase space where the gluon becomes soft.
Due to the finite mass of the top quark no collinear (mass)
singularities arise and thus the above condition is sufficient
to define an infrared finite cross section. The requirement
(4) does not lead to a finite cross section for e+e− →
qq̄g, where q is a massless quark, because the latter cross
section is also singular when the gluon is collinear to the
(anti-)quark.

We want to study the fraction r of tt̄g events for which
xg > xcut with respect to all tt̄ events. Since xg is no useful
variable for final states with four or more partons (which
will be relevant at higher orders in αs), we use instead
the scaled tt̄ invariant mass square xtt̄ defined in (3), i.e.
replace the condition xg > xcut by the (at LO equivalent)
condition:

1 − xtt̄ > xcut. (5)

The fraction r is defined as

r(xcut) =
σ (e+e− → tt̄X; 1 − xtt̄ > xcut)

σtot(e+e− → tt̄)

≡ σ3(xcut)
σtot

. (6)

At LO we have X = g and write:

r(xcut) =
αs

2π

σ0
3(xcut)
σ0

tot
≡ αs

2π
A(xcut) + O

(
α2

s

)
. (7)

Here, αs/(2π)σ0
3(xcut) denotes the LO cross section for

e+e− → tt̄g with 1−xtt̄ > xcut and σ0
tot is the LO inclusive

cross section for e+e− → tt̄. The coefficient A(xcut) may
be written as follows:

A(xcut) =
2NC CF σpt

σ0
tot

∫ 1

0
dx

∫ 1

0
dx̄ F1(x, x̄)

×Θ(1 − xtt̄ − xcut)Θ(1 − cos2 θtt̄), (8)

where CF = (N2
C − 1)/(2NC) and NC = 3 is the number

of colours. The point cross section σpt reads

σpt = σ(e+e− → γ∗ → µ+µ−) =
4πα2

3s
, (9)

and the LO total cross section σ0
tot can be expressed in

terms of the dimensionless mass variable,

z =
m2

t

s
, (10)

as follows:

σ0
tot = NCσpt

√
1 − 4z [cV (1 + 2z) + cA(1 − 4z)] . (11)

The coupling factors cV,A appearing in (11) are given ex-
plicitly by:

cV = Q2
t fγγ + 2 gt

V Qt Reχ(s) fγZ + gt 2
V |χ(s)|2 fZZ ,

cA = gt 2
A |χ(s)|2fZZ , (12)

with

fγγ = 1 − λ−λ+,

fZZ = (1 − λ−λ+)(ge2
V + ge2

A ) − 2(λ− − λ+)ge
V ge

A,

fγZ = −(1 − λ−λ+)ge
V + (λ− − λ+)ge

A. (13)

Here, Qt = 2/3 is the electric charge of the top quark, and
gf

A,V denote the axial and vector couplings of the fermion
f . In particular, ge

V = − 1
2 + 2 sin2 ϑW , ge

A = − 1
2 for an

electron, and gt
V = 1

2 − 4
3 sin2 ϑW , gt

A = 1
2 for a top quark,

where ϑW is the weak mixing angle. The function χ(s)
reads

χ(s) =
1

4 sin2 ϑW cos2 ϑW

s

s − m2
Z + imZΓZ

, (14)

where mZ and ΓZ stand for the mass and the width of
the Z boson. Finally, λ− (λ+) denotes the longitudinal
polarization of the electron (positron) beam.
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Fig. 1. Kinematically allowed region in the (x, x̄) plane for
a tt̄g final state with mt = 175 GeV. The enveloping light-
coloured triangle is the allowed region for massless quarks.
Lines indicate cuts on the scaled gluon energy

The function F1 may be decomposed as:

F1(x, x̄) = cV FV
1 (x, x̄) + cAFA

1 (x, x̄). (15)

Using the abbreviation

B =
1

(1 − x)(1 − x̄)
, (16)

we have [13]:

FV
1 (x, x̄) = B

{
x2 + x̄2

2
− z

[
2xg +

(
(1 − x)2

+(1 − x̄)2
)
B

] − 2z2x2
gB

}
, (17)

FA
1 (x, x̄) = FV V

1 (x, x̄)

+zB

{
(x + x̄)2 − 10(1 − xg) + 6zx2

gB

}
. (18)

The cosine of the angle between the top quark and
antiquark appearing in (8) can be expressed in terms of
the top quark mass and the scaled energy variables:

cos θtt̄ =
xx̄ − 2(1 − xg) + 4z√

(x2 − 4z)(x̄2 − 4z)
. (19)

The Heaviside function Θ(1 − cos2 θtt̄) defines the kine-
matically allowed region in the (x, x̄) plane when no cuts
are applied. For mt = 175 GeV and the two c.m. energies√

s = 0.5 TeV and
√

s = 1 TeV this region is depicted in
Fig. 1. The cuts on the scaled gluon energy xcut = 0.1, 0.2
are indicated as lines, and the enveloping triangle is the
kinematically allowed region for massless quarks. With a

cut xcut on the gluon energy, the kinematically allowed
area P (xcut, z) is:

P (xcut, z) ≡
∫ 1

0
dx

∫ 1

0
dx̄ Θ(1 − xtt̄ − xcut)Θ(1 − cos2 θtt̄)

= Θ(1 − 4z − xcut)
[
2z(1 − z) ln (ρ)

+
1
2
(1 − xcut)(1 + xcut + 2z)

1 − ρ

1 + ρ

]
, (20)

where

ρ =
1 − √

1 − 4z/(1 − xcut)
1 +

√
1 − 4z/(1 − xcut)

. (21)

When the kinematic boundary 1−4z = xcut is approached
for a fixed value of xcut, P (xcut, z) vanishes like (1 − 4z −
xcut)3/2.

The function A(xcut) defined in (8) can be very eas-
ily computed numerically. This has the advantage that
an implementation of additional and/or different cuts is
straightforward. On the other hand, an analytic result for
A(xcut) is obviously desirable, and in fact it is possible to
perform the twofold integral in (8) analytically. The result
is:

A(xcut) =
2NC CF σpt

σ0
tot

Θ(1 − 4z − xcut)

× [
cV AV (xcut) + cAAA(xcut)

]
, (22)

where

AV (xcut) = −1
2
(1 + 4xcut − x2

cut + 8zxcut + 2z2) ln(ρ)

+
1
4
(1 − xcut)(11 − 3xcut + 34z)

1 − ρ

1 + ρ

−(1 − 4z2)g(ω, ρ),

AA(xcut) = AV (xcut) − z
[
(1 − 4z − 12xcut − x2

cut + 6z2)

× ln(ρ) +
1
2
(1 − xcut)(51 + xcut − 6z)

1 − ρ

1 + ρ

−6(1 − 2z)g(ω, ρ)
]
, (23)

with

g(ω, ρ) = ln2(ω) − 2 ln
(

ρ − ω

1 − ρ ω

) (
ln(ω) +

1 − ω2

1 + ω2

)

+ ln2(ρ) + 2 Li2
(
1 − ρ

ω

)
+ 2 Li2 (1 − ρ ω) (24)

and

ω =
1 − √

1 − 4z

1 +
√

1 − 4z
. (25)

Figure 2 shows the fraction r defined in (6) as a func-
tion of the c.m. energy for mt = 175 GeV, and three differ-
ent values of xcut. Here and in all other numerical results of
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Fig. 2. Fraction r(xcut) (defined in (6)) at leading order in αs

for xcut = 0.02, 0.1, 0.2 and mt = 175 GeV as a function of the
center-of-mass energy

√
s. The running of αs is included

this paper we consider unpolarized electron and positron
beams. The running of the strong coupling is taken into
account in the curves, i.e. we use αs(µ =

√
s) with six ac-

tive flavours. Our input value is α
nf =5
s (µ = mZ) = 0.118,

which is evolved up to µ = mt with five active flavours,
and then converted into α

nf =6
s (mt) using the so-called

matching conditions of [14]1. For example, we thus get
α

nf =6
s (µ = 500 GeV) = 0.0952.

We close this section with a remark concerning the
experimental distinction of tt̄ events with a gluon radiated
off the t or t̄ from events in which the gluon is radiated off
the b or b̄ produced in the decays of the top quark pairs. It
has been shown in [15] that the following two constraints
efficiently select events where the gluon is produced in
association with the top quark pair:

Eg >

√
s

2
xcut � Γt,

mt − 2Γt ≤
√(

kW ± + kb(b̄)

)2
≤ mt + 2Γt. (26)

By requiring that the invariant mass of the Wb system
lies in the vicinity of the top quark mass, the probability
that a highly energetic gluon jet (Eg � Γt ≈ 1.4 GeV)
is emitted from the b or b̄ is very small. Our computation
may therefore be applied to describe events of the type
e+e− → W+W−bb̄g that fulfil both conditions of (26).
Our “default” value for many of the results below will be
xcut = 0.1, which corresponds to Eg = 25 (50) GeV for a
c.m. energy

√
s = 0.5 (1) TeV.

1 To be more precise, the conversion is performed at the scale
mt(mt), where mt is the running top quark mass

3 Results at next-to-leading order

At order α2
s, we have to consider both virtual and real cor-

rections to the process (2). The real corrections consist of
the processes e+e− → tt̄gg, e+e− → tt̄qq̄ (q = u, d, s, c, b).
If

√
s > 4mt, the production of two tt̄ pairs becomes

possible. However, these rather spectacular events are ex-
tremely rare for the c.m. energies considered below and
contributions from the process e+e− → tt̄tt̄ can therefore
be neglected2.

As mentioned before, the condition 1 − xtt̄ > xcut is
equivalent, at LO, to requiring a minimal scaled gluon
energy xg. For final states with four or more partons,
an alternative condition is 2kkX/s > xcut, where in the
c.m. system 2kkX/s is equal to 2EX/

√
s, with EX =√

s−Et −Et̄. For a given cut xcut, this condition leads to
larger contributions to r(xcut) from the four-parton final
states as compared to the definition employed in (6), since
2EX/

√
s = 1 − xtt̄ + k2

X/s with k2
X ≥ 0.

We renormalize the coupling in the modified minimal
subtraction (MS) scheme. For the results of this section,
the top quark mass is defined as the perturbative pole
mass, i.e., the mass renormalization is carried out in the
on-shell scheme. The result for the fraction r(xcut) at a
renormalization scale µ may be written to next-to-leading
accuracy as

r(xcut, µ) =
σ3(xcut, µ)

σtot(µ)

=
αs(µ)

2π
A(xcut) +

(
αs(µ)

2π

)2

B(xcut, µ)

+O
(
α3

s

)
, (27)

with

σ3(xcut, µ) =
αs(µ)

2π
σ0

3(xcut) +
(

αs(µ)
2π

)2

σ1
3(xcut, µ)

+O
(
α3

s

)
, (28)

σtot(µ) = σ0
tot +

αs(µ)
2π

σ1
tot + O

(
α2

s

)
. (29)

The coefficient A(xcut) is given explicitly in (22), (23), and
the coefficient B(xcut, µ) reads:

B(xcut, µ) =
σ1

3(xcut, µ)
σ0

tot
− σ1

totσ
0
3(xcut)

(σ0
tot)

2 . (30)

The result for σ1
tot is well known (see, e.g. [16]). For the

computation of σ1
3(xcut, µ) we use the techniques and re-

sults of [17] and [13]. In these papers, the production of
three jets involving b quarks was studied at NLO, tak-
ing into account the b quark mass. The matrix elements
given there can be easily adapted to the case at hand. For
technical details of the calculation, we refer the reader to
[13].

2 Contributions from “secondary” t-quarks, originating from
gluon splitting in e+e− → qq̄g, are also heavily suppressed
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Fig. 3. Fraction r(xcut) at leading (LO) and next-to-leading
order (NLO) as a function of xcut at
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√

s

Table 1. Leading order and next-to-leading order coefficients
of the fraction r(xcut, µ) as defined in (27) for two different
center-of-mass energies and xcut = 0.1. The renormalization
scale µ is set to

√
s, and a top quark pole mass of mt = 175

GeV is used
√

s = 0.5 TeV
√

s = 1 TeV
xcut A B A B

0.02 10.02 371(2) 35.46 680(3)
0.04 6.976 224(2) 26.87 524(3)
0.06 5.302 156(2) 21.99 447(3)
0.08 4.185 119(2) 18.64 384(3)
0.10 3.373 90.6(12) 16.12 347(3)
0.12 2.751 71.5(10) 14.13 309(3)
0.14 2.260 57.1(10) 12.50 280(3)
0.16 1.864 46.9(10) 11.12 251(2)
0.18 1.539 36.9(10) 9.957 226(2)
0.20 1.271 30.1(8) 8.945 200(2)

Figure 3 (4) shows the LO and NLO results for r as
a function of xcut at

√
s = 0.5 TeV (

√
s = 1 TeV). The

renormalization scale is set to µ =
√

s. (The scale depen-
dence of our results will be discussed in the next section.)
In Table 1 we list the A and B coefficients for a sample
of xcut-values. The numerical errors in the last digits of
the B coefficients are also shown3. For

√
s = 0.5 TeV, the

relative size of the QCD corrections, αs/(2π)B/A, varies
between 56% (at xcut = 0.02) and 36% (at xcut = 0.2).
At

√
s = 1 TeV, the QCD corrections are roughly con-

stant as xcut is varied and of the order of 30%. In Figs. 5,
6, and 7 we plot various distributions of the cross section
σ3(xcut, µ). All distributions are normalized to the total tt̄

3 For example, 57.1(10) stands for 57.1 ± 1.0
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Fig. 4. Same as Fig. 3, but for
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s = 1 TeV
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Fig. 5. Distribution 1/σtotdσ3/dx at LO and NLO for
√

s =
µ = 0.5 TeV and xcut = 0.1. The scaled quark energy is defined
in (3), and the cross section σ3 is defined in (27)

cross section σtot, and we set
√

s = µ = 0.5 TeV, mt = 175
GeV, and xcut = 0.1. These values lead to the kinematic
limits 0.7 ≤ x . 0.9837, 0.1 ≤ 1 − xtt̄ ≤ 0.51 for the
scaled top quark energy x and the quantity 1 − xtt̄, re-
spectively. (Recall that in leading order 1 − xtt̄ is equal
to the scaled gluon energy xg.) Figure 5 shows the dis-
tribution 1/σtotdσ3/dx. The distribution reaches its max-
imum around x ≈ 0.925, which corresponds to Et ≈ 231
GeV. We note in passing that the distribution with re-
spect to the scaled top antiquark energy x̄ is equal to
the one shown due to charge conjugation invariance of
the strong interactions. In Fig. 6 we plot the distribution
1/σtotdσ3/d(1−xtt̄). The size of the QCD corrections de-
pends only weakly on 1 − xtt̄. Figure 7 depicts the distri-
bution with respect to the cosine of the angle between the
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defined in (19)

top quark and antiquark. As one might have expected, this
distribution is very sharply peaked close to cos θtt̄ = −1.

4 Top quark pole mass versus running mass

All results in the preceding section have been obtained
by using the MS scheme for the coupling renormalization
and by renormalizing the top quark mass in the on-shell
scheme. In this section we study the dependence of our
results on the mass renormalization scheme as well as on
the choice of the renormalization scale µ.

In order to understand the impact of a change of the
mass definitions on our fixed order predictions, it is in-
structive first to consider the simple and well-known case
of the inclusive rate σtot. We use the notation zon =
(mon

t )2 /s and z(µ) = m2
t (µ)/s, where mon

t is the pole

mass (for which we always use the value mon
t = 175 GeV)

and mt(µ) is the MS mass at a scale µ. The latter is ob-
tained from the renormalization group evolution with the
input mt(µ = mt) = 168 GeV. The relation between the
two mass parameters is given by

zon = z(µ) + ∆z(µ), (31)

where, to order αs,

∆z(µ) =
2CF αs(µ)

π

[
1 − 3

4
ln

(
z(µ)s
µ2

)]
z(µ)

+O
(
α2

s

)
. (32)

To order αs we thus have4:

σtot(zon, µ) = σtot(z(µ) + ∆z(µ), µ)

= σ0
tot(z(µ)) + ∆z(µ)

dσ0
tot

dz
(z(µ))

+
αs(µ)

2π
σ1

tot(z(µ)) + O
(
α2

s

)
, (33)

where dσ0
tot/dz can be obtained from (11). Figure 8 (9)

shows the total cross section in units of the point cross
section (9) as a function of the renormalization scale at√

s = 0.5 TeV (
√

s = 1 TeV) for both mass definitions.
When σtot is expressed in terms of the pole mass, the
dependence on µ is (to order αs) only induced by the
running of αs. Two important features are visible in the
curves: First, within a large range of values for µ, the
QCD corrections are smaller when the result is expressed
in terms of the running mass. Second, the µ dependence
is flatter if the running mass is used. For small values of
µ one further observes a strong decrease (increase) of the
LO (NLO) prediction for σtot expressed in terms of the
running mass. These unphysical features occur because
both the coupling and the running mass become large as
µ becomes small5. The decrease of the LO result simply
reflects the fact that σ0

tot goes to zero as z approaches the
threshold value z = 1/4. The fact that the NLO result in
both mass renormalization schemes is rather stable when
µ is varied as well as the good agreement of the predic-
tions in the two schemes indicates that the contributions
of order α2

s are small. As the explicit calculation of [4]
shows, this is indeed the case for energies well above the
top quark production threshold.

We now turn back to the discussion of the fraction
r(xcut). The renormalization scale dependence of the NLO
coefficient B in the pole mass scheme is easily obtained:

B(xcut, z
on, µ) = B(xcut, z

on,
√

s)

−A(xcut, z
on)β0 ln

(√
s

µ

)
, (34)

with β0 = (11NC −2nf )/3 and nf = 6. In analogy to (33)
we may express the result for r(xcut) in terms of the MS
mass at the scale µ by writing

4 I thank M. Spira for explaining to me this method of
switching between two mass renormalization schemes

5 For example, at µ = 25 GeV we have mt(µ = 25 GeV) ≈
199.3 GeV
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Fig. 8. LO and NLO results for the total tt̄ cross section in
units of the point cross section defined in (9) at a c.m. energy of√

s = 0.5 TeV. The renormalization scale µ is varied between
25 GeV and

√
s, and results obtained in the pole mass and in

the MS (running) mass renormalization schemes are compared
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Fig. 9. Same as Fig. 8, but for
√

s = 1 TeV

r(xcut, z
on, µ) = r(xcut, z(µ) + ∆z(µ), µ)

=
αs(µ)

2π
A (z(µ)) + ∆z(µ)

dA

dz
(z(µ))

+
(

αs(µ)
2π

)2

B(xcut, z(µ), µ) + O
(
α3

s

)
. (35)

Figures 10 and 11 show the LO and NLO results for r at
xcut = 0.1 as a function of µ both in the pole mass and
the running mass scheme at

√
s = 0.5 TeV and

√
s = 1

TeV, respectively. At
√

s = 0.5 TeV, we find a rather
large difference of the NLO results in the two schemes at
scales µ ∼ √

s. The additional gluon in the final state car-
ries (at xcut = 0.1) a momentum of at least 25 GeV, and
the allowed phase space depends rather strongly on the
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Fig. 10. Same as Fig. 8, but for the fraction r at xcut = 0.1
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Fig. 11. Same as Fig. 10, but for
√

s = 1 TeV

top quark mass6, which explains the strong µ-dependence
of the LO result in terms of the running mass. At NLO
the µ-dependence is drastically reduced, but r still in-
creases with µ. The gain in phase space due to the de-
crease of mt(µ) overcompensates the decrease of αs(µ)
even at NLO. This suggests that the running mass should
not be used in the fixed-order prediction for the fraction
r at

√
s = 0.5 TeV and xcut ≥ 0.1. At these values, we are

too close to the kinematic threshold of the tt̄g final state
where the running mass is an “unnatural” parameter.

At
√

s = 1 TeV the differences of the NLO results for
the two mass definitions are smaller as compared to the
case of

√
s = 0.5 TeV. Also, the NLO results only weakly

depend on the choice of µ, especially if the running mass is
used. The two scales mt and

√
s are now rather far apart,

and the running mass parameter becomes preferable. For

6 The running top quark mass decreases from 199.3 GeV to
155.3 GeV as µ is varied between 25 and 500 GeV
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Fig. 12. Dependence of the fraction r at xcut = 0.1 and
√

s =
µ = 1 TeV on the value of the running top quark mass mt at
the scale µ = 1 TeV. The dashed line is the LO result, and the
solid line is the NLO result

even higher c.m. energies, the fraction r as defined in (6)
eventually suffers from large contributions in the collinear
region; as z → 0, the result in nth order is dominated
by terms ∼ (αs ln(z))n, which should either be resummed
or avoided by modifying the definition of r. One could
for example, after selecting samples of tt̄X events with
1 − xtt̄ > xcut, use in addition standard jet algorithms to
define collinear safe cross sections.

An intriguing question is whether a measurement of
the fraction r allows a direct determination of the value
of the running mass parameter of the top quark at high
energies. (Analogously, NLO results for three-jet fractions
involving b quarks [18,17,13] have been used to extract a
value for mb(µ = mZ) from the high-statistics LEP [19]
and SLD [20,21] data.) We consider here as a case study
the result for r(xcut = 0.1) at

√
s = 1 TeV. As was dis-

cussed above, for these values the fraction r is perturba-
tively well under control when expressed in terms of the
running mass. We now vary the value mt(µ = 1 TeV) be-
tween 140 and 160 GeV7 and compute r(xcut = 0.1) at
LO and NLO. The results are shown in Fig. 12. At NLO,
r(xcut = 0.1) decreases by about 4% when the running
top quark mass is changed from 140 to 160 GeV. If a
measurement of r will be possible with an error of ±1%,
the running top quark mass at µ = 1 TeV could be de-
termined up to ±5 GeV. A statistical error of 1% on r is
realistic with the envisioned high luminosity of a future
linear collider operating at

√
s = 1 TeV, but whether or

not the systematic error can be kept that small remains
to be seen.

Although the sensitivity of the fraction r on mt(µ =
1 TeV) seems to be rather poor, a direct determination
of the running top quark mass at such a high scale would

7 The value obtained from the renormalization group evolu-
tion is mt(µ = 1 TeV) = 148.6 GeV

provide a nice test of perturbative QCD in the follow-
ing way: It is expected that a very precise value of the
top quark mass can be obtained from the threshold scan
of σtot. Since the pole mass suffers from (nonperturba-
tive) infrared ambiguities, improved mass definitions have
been proposed in this context, the so-called potential-
subtracted [5,6] and 1S [7] mass. After extracting these
masses from the threshold scan, they can be converted
into the MS mass, evolved to µ = 1 TeV, and compared
to the direct measurement suggested above.

5 Conclusions

At a future high-energy and high-luminosity e+e− linear
collider, the production of top quark pairs in association
with one or more additional hard partons will be an inter-
esting new testing ground for perturbative QCD. For ex-
ample, a measurement of the fraction r of tt̄X events with
respect to all tt̄ events will provide a powerful “flavour in-
dependence test” of the strong interactions. In this paper
we have studied the reaction e+e− → tt̄X to order α2

s.
The fraction r has been defined as a function of a pre-
set cut parameter xcut by demanding 1−xtt̄ > xcut where
xtt̄ = (kt+kt̄)2/s is the scaled invariant mass square of the
tt̄ pair. At LO, where 1 − xtt̄ is equal to the scaled gluon
energy xg = 2Eg/

√
s, we have calculated this fraction an-

alytically. The QCD corrections to r(xcut), which we have
evaluated for c.m. energies

√
s = 0.5 TeV and

√
s = 1 TeV,

are large and positive. We have further computed distri-
butions of the differential cross section for e+e− → tt̄X
with respect to the scaled top quark energy, the variable
1 − xtt̄, and the cosine of the angle between t and t̄. A
measurement of such distributions will be interesting for
instance in the context of searches for possible anomalous
top quark couplings, and the QCD corrections have to be
included in such analyses. Finally we have studied the de-
pendence of our results on the renormalization scale µ and
compared the pole mass and the running mass renormal-
ization schemes. We have found that at

√
s = 0.5 TeV

the phase space for tt̄g production depends (for a hard
gluon) rather strongly on the value of the top quark mass
parameter. We have concluded that for this (or smaller)
c.m. energies the fixed order prediction for the fraction r
should not be expressed in terms of the running mass. At√

s = 1 TeV, mt(µ) becomes the preferable mass parame-
ter. This is reflected in the improved stability of the NLO
results under variations of the scale µ. If a measurement
of r at

√
s = 1 TeV is possible to an accuracy of 1%,

the running mass mt(µ = 1 TeV) could be directly deter-
mined up to about ±5 GeV, offering a nice consistency
check of the renormalization group evolution of mt(µ) as
predicted by perturbative QCD.

In this paper we have concentrated on studying the
fraction of tt̄X events and their distributions with respect
to energies of and angles between final state particles only.
Future work will include the investigation of observables
that involve the orientation of the final state with respect
to the electron beam, like forward-backward asymmetries
or so-called “event handedness” correlations [10].
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